





Version 1.00 March 20<sup>th</sup>, 2005



### Contents

| Version Information          | 5  |
|------------------------------|----|
| Hardware Version             | 5  |
| Firmware Version             | 5  |
| Document Version             | 5  |
| General Description          | 6  |
| Features                     | 7  |
| Specifications and Standards | 9  |
| Electrical                   | 9  |
| Absolute Maximum Ratings     | 9  |
| DC Characteristics           | 9  |
| Temperature                  | 10 |
| Communications               | 11 |
| File System                  | 11 |
| Electrical Connections       | 12 |
| Mechanical Drawing           | 13 |
| Updating the Firmware        | 14 |
| Digital Control of the µMP3  | 15 |
| 8 Switch Mode                | 15 |
| 7 Bit Parallel Mode          | 17 |
| Hardware Busy Indicator      |    |
| Communications Protocol      | 20 |
| Description                  |    |
| Command Format               | 21 |
| Command Listing Format       | 21 |
| General Commands             |    |
| Version/Serial Number        |    |
| Play Control Commands        | 23 |
| Play File                    | 23 |
| Stop Playback                | 24 |
| Pause Playback               | 24 |
| Play Status                  |    |

### PAGE 2



| Playback Information  | 26 |
|-----------------------|----|
| Play Tone             | 27 |
| Playback Speed Change | 28 |
| Settings              | 29 |
| File Control Commands | 31 |
| Close File            | 31 |
| Free Handle           | 31 |
| Open File             | 32 |
| Read File             | 33 |
| Write File            | 34 |
| Information           | 35 |
| Make Directory        | 36 |
| Erase File            | 36 |
| Query Volume          | 37 |
| List Directory        | 38 |
| Device Information    | 39 |
| Example Session       | 40 |
| Error Responses       | 41 |
| Notices               | 43 |
| Copyright Information | 43 |
| Trademarks            | 43 |
| Life Support Policy   | 43 |
| Contact and Support   | 43 |

### PAGE 3



## Figures

| Figure 1 - µMP3 Electrical Connections | 12 |
|----------------------------------------|----|
| Figure 2 - Mechanical Drawing          | 13 |

#### Tables

| Table 1 - Absolute Maximum Ratings                 | 9  |
|----------------------------------------------------|----|
| Table 2 - DC Characteristics                       | 9  |
| Table 3 - 8 Switch Mode Pin Assignments            | 16 |
| Table 4 - 8 Switch Mode File Numbering             | 16 |
| Table 5 - 8 Switch Mode File Number Offset Example | 17 |
| Table 6 - 7 Bit Parallel Mode Pin Assignments      | 18 |
| Table 7 - 7 Bit Parallel Mode File Numbering       | 19 |
| Table 8 - Settings and Values                      | 30 |
| Table 9 - Error Codes                              | 42 |

µMP3 Playback Module



# **Version Information**

# Hardware Version

Current Version: UMP3-110-A1

Jan 22/2005 – UMP3-110-A1

• Initial Release

# Firmware Version

Current Version: 110.10

Jan 22/2005 – 110.10

Initial Release

# **Document Version**

Current Version: 1.00

March 20/2005 - 1.00

Initial Release



# **General Description**

The uMP3 ( $\mu$ MP3 or "micro MP3") module allows designers to integrate high quality MP3/PCM/WAV/IMA ADPCM playback into designs with an easy to use TTL serial protocol.

Sound files such as voice prompts, sound effects, and music can be played using the  $\mu$ MP3. MP3 playback is CBR (Constant Bit Rate) up to 48 KHz at 192 Kbps, or VBR (Variable Bit Rate) up to 48 KHz at 320 Kbps peak. MP3 files are stored on SD or MMC cards, in a format readable by your PC. PCM (WAV) files and IMA ADPCM files can also be played.

You can use the  $\mu$ MP3 for your data logging applications as well as playback of MP3 files. The  $\mu$ MP3 can create files and store data to MMC and SD cards which can then be removed and read from any standard MMC/SD card reader on a PC. The  $\mu$ MP3 will read SD or MMC cards in either FAT16 or FAT32 formats in any size commercially available.

Each module has a 1/8" stereo headphone jack for headsets (16 Ohms+) or for line-in connections. The  $\mu$ MP3 also has a multi-function 10-pin connector that allows direct operation of the module using simple logic triggers.

The firmware on the  $\mu$ MP3 is updateable via a bootloader, so you can take advantage of any new features or fixes that may become available for the  $\mu$ MP3 from the <u>Rogue Robotics</u> website.

#### PAGE 6



# Features

- Audio Playback
  - MP3
    - MPEG audio layer 3 decoder (ISO11172-3)
    - Supports MPEG 1 & 2, and 2.5 extensions, all their sample rates and bit rates, in mono and stereo
    - CBR 48 KHz at 192 Kbps maximum
    - VBR 48 KHz at 320 Kbps peak maximum
  - Configurable bass enhancement
  - MP3+V file support (vlsi.fi)
  - o PCM
    - Supports rates up to 44100Hz stereo at 8 or 16 bits
  - IMA ADPCM
    - Supports rates up to 44100Hz (mono only)
  - Playback speed can be altered
  - Tones
- Audio output characteristics
  - $\circ$  1/8" jack for audio output
  - o 0.100" header
  - 1.8 Vpp output
  - o 87 dB S/N Ratio
- SD card and MMC card compatible
  - SD card lock respected
- FAT16 or FAT32 formats supported
  - Long filename support
  - Up to 2 Terabytes accessible through FAT32
- Serial control interface
  - 5 Volt serial UART connection
  - Simple command interface
- 8 bit digital control
  - o 10 pin DIL 0.100" header (8 bit data, 2 power)
  - o 8 individual file control, falling edge triggered
  - o 128 file control, 1 clock signal, falling edge triggered
  - o Multiple banks
  - Uninterruptible setting available
  - Internal pull-ups provided
- Playback indicator
  - Selectable playback indicator
  - 30 mA maximum at 5 Volts
- Read and Write capability

## PAGE 7



- $\circ$  512 byte block maximum transfer size
- Up to 4 files open at any time for read or write
- o Simultaneous read/write access while playing MP3 files
- 5 Volt operation
  - o 200 mA maximum (during card write)
  - 15 mA typical (during MP3 playback)
  - Onboard 3.3 Volt LDO Voltage regulator for card
- Bootloader for firmware updates

### PAGE 8



# **Specifications and Standards**

# **Electrical**

# Absolute Maximum Ratings

| Operating Temperature                | -40 C to +100 C |
|--------------------------------------|-----------------|
| Storage Temperature                  | -55 C to +140 C |
| Maximum Operating Voltage            | +6.0V           |
| Voltage on any input with respect to | -1.0 V to +5.5V |
| Ground                               |                 |

#### Table 1 - Absolute Maximum Ratings

NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to components of the module. This is a stress rating only and functional operation of the module at these or any other condition beyond those indicated is not implied. Exposure to absolute maximum rating conditions for extended periods may affect component and module reliability.

# DC Characteristics

| Parameter             | Symbol | Min      | Тур   | Мах       |
|-----------------------|--------|----------|-------|-----------|
| Power Supply          | V+     |          | 5.0 V | 5.5 V     |
| Voltage               |        |          |       |           |
| Power Supply Current  |        |          | 30 mA | 200 mA    |
| Input Low Voltage     |        | -0.5 V   |       | 1.0V      |
| (including Serial Rx) |        |          |       |           |
| Input High Voltage    |        | 3.0 V    |       | 5.5 V     |
| (including Serial Rx) |        |          |       |           |
| Output Low Voltage    |        |          |       | 0.7 V     |
| (Hardware Busy        |        |          |       |           |
| Indicator, Serial Tx) |        |          |       |           |
| Output High Voltage   |        | 4.0 V    |       |           |
| (Hardware Busy        |        |          |       |           |
| Indicator, Serial Tx) |        |          |       |           |
| Input pin pull-up     |        | 20 kOhms |       | 100 kOhms |
| resistance            |        |          |       |           |

 Table 2 - DC Characteristics

PAGE 9



# **Temperature**

This version of the uMP3 is rated for commercial temperature ranges. *Commercial Temperature Operating Range:*  $0^{\circ}C$  to  $+70^{\circ}C$ 

Industrial temperature ranges are special order devices. Industrial Temperature Operating Range: -40°C to +85°C

### PAGE 10



# **Communications**

TTL Serial Port:

- 9600, 19200, 38400, 57600, or 115200 bps (9600 bps default)
- 8 bits
- no parity
- 1 stop bit
- no echo

# File System

FAT16 and FAT32 only. (FAT12 is not supported)

File system MUST be formatted on a PC initially. The device does not format cards.

Long filenames are supported. Filenames created by the module are 8.3 filenames only (8 character name, 3 letter extension).

SD card locks are respected, so locked cards will not be writeable. Encryption features of SD cards are not implemented.

The number of files that can be created is limited by the file system (FAT16, FAT32).

Maximum of 4 files can be open at any time using file handles.

Maximum of 512 bytes per read/write command.

Files must be closed before removing cards for data reliability. If the Activity LED is on, you should not remove a card. When the LED is off, and you have closed all files, you can safely remove the MMC or SD card.

## PAGE 11



# **Electrical Connections**



Figure 1 - µMP3 Electrical Connections



# **Mechanical Drawing**

- Units in inches.
- The MMC/SD connector is mounted on the back.
- DXF files or IGES files available on request.
- All dimensions are +/- 0.01"



Figure 2 - Mechanical Drawing

## PAGE 13



# Updating the Firmware

If there is a new firmware update for the  $\mu$ MP3, it may be downloaded from <u>http://www.roguerobotics.com/</u>. Once downloaded, it can be sent to the  $\mu$ MP3 using the "update" program. Both the firmware update and the update program will be packaged together in a Zip compressed file.

You will need to connect the  $\mu$ MP3 to a PC serial port through a TTL Level converter, such as a MAX232. *THE*  $\mu$ MP3 WILL BE DAMAGED IF CONNECTED DIRECTLY TO A PC SERIAL PORT!

To put the  $\mu$ MP3 into bootloader mode and download the firmware:

- Disconnect power to the  $\mu MP3,$  and remove any MMC/SD card from the  $\mu MP3.$
- Use a small flat-blade screwdriver to bridge the "UPD" jumper, and continue to hold the screwdriver in place.
- Connect the power to µMP3. The Activity LED will stay illuminated (longer than 2 seconds)
- Start the update program from the command line (Start -> Run -> "cmd.exe" or "command.exe"):
  - o "update ump1-11010.rfw -COM1" (if your serial port is something other than COM1, use "update ump1-11010.rfw comN", where comN is your com port)

The update program will show the progress and you will see the  $\mu$ MP3 Activity LED blink as the firmware is updated. Once complete, the  $\mu$ MP3 will reset and start normally.

When the  $\mu$ MP3 is put into bootloader mode, all settings for the **Settings** command are reset to default values (this is so that you can reset the  $\mu$ MP3 if an unknown value is put in any of the settings). You do not have to download anything to reset the values. Just simply put the  $\mu$ MP3 into bootloader mode (explained above), then remove the power to the  $\mu$ MP3. The values will be reset.

### PAGE 14



# Digital Control of the µMP3

The  $\mu$ MP3 has a multipurpose 8 bit interface for controlling the module without using the serial interface. This allows for very simplistic interfacing to the  $\mu$ MP3.

There are two different styles for the Input interface:

- 8 Switch Mode
- 7 Bit Parallel Mode

The files are played from the MMC/SD card only.

# 8 Switch Mode

The 8 Switch mode allows each of the 8 data bits of the Input interface to be used as a trigger for 8 different files.

Pin 1 plays a file named "/B0000.MP3". Pin 2 plays a file named "/B0001.MP3" and so on.



| Input Interface Pin | Description  |
|---------------------|--------------|
| 1                   | Bit/Switch 0 |
| 2                   | Bit/Switch 1 |
| 3                   | Bit/Switch 2 |
| 4                   | Bit/Switch 3 |
| 5                   | Bit/Switch 4 |
| 6                   | Bit/Switch 5 |
| 7                   | Bit/Switch 6 |

## PAGE 15



| 8  | Bit/Switch 7 |
|----|--------------|
| 9  | Ground       |
| 10 | V+ (5 Volts) |

 Table 3 - 8 Switch Mode Pin Assignments

To set the Input interface into 8 Switch Mode, you need to configure the  $\mu$ MP3 using the **Settings** "Input Style" command. The style value for 8 Switch Mode is "1". Once the setting has been configured, it is stored in EEPROM, and does not have to be set again. You can reconfigure it at any time, or clear the settings to default values by putting the  $\mu$ MP3 into "update mode".

Once in 8 Switch Mode, all pins of the Input interface are weakly pulled high internally. To trigger a switch, the switch must be pulled to ground. Once the switch is pulled to ground, the associated file with the switch is played.

| Input Interface Pin | Bit/Switch Associated Filename |            |
|---------------------|--------------------------------|------------|
| 1                   | 0                              | /B0000.MP3 |
| 2                   | 1                              | /B0001.MP3 |
| 3                   | 2                              | /B0002.MP3 |
| 4                   | 3                              | /B0003.MP3 |
| 5                   | 4                              | /B0004.MP3 |
| 6                   | 5                              | /B0005.MP3 |
| 7                   | 6                              | /B0006.MP3 |
| 8                   | 7                              | /B0007.MP3 |

Table 4 - 8 Switch Mode File Numbering

All files are stored in the root directory of the MMC or SD card.

The input pins are not debounced, so a capacitor/resistor debounce circuit may be needed if the input pins are connected directly to a switch.

Files are played when a switch is pulled low. Playback will be interrupted if another switch is pulled low before the end of playback. To make playback uninterruptible, you can use the **Settings** "Uninterrupted playback from Input" command to ensure each file is played to completion before a new switch can trigger playback.

You can use the *Settings* "Input File Number Offset" command to introduce an offset to the filenames associated with each switch. This allows you to create "banks" of files to associate with the switches. For example, if the "Input File Number Offset" value is set to 200, then the associated files are as follows:

### PAGE 16



| Input Interface Pin | <b>Bit/Switch</b> | Associated Filename |
|---------------------|-------------------|---------------------|
| 1                   | 0                 | /B0200.MP3          |
| 2                   | 1                 | /B0201.MP3          |
| 3                   | 2                 | /B0202.MP3          |
| 4                   | 3                 | /B0203.MP3          |
| 5                   | 4                 | /B0204.MP3          |
| 6                   | 5                 | /B0205.MP3          |
| 7                   | 6                 | /B0206.MP3          |
| 8                   | 7                 | /B0207.MP3          |

Table 5 - 8 Switch Mode File Number Offset Example

The offset can be set at any time using the serial interface.

*Note*: If the SD/MMC card has not been initialized before a switch is triggered, there can be a noticeable delay (during the FAT file system initialization). This will only happen once if the card has not been initialized.

# 7 Bit Parallel Mode

The 7 Bit Parallel mode provides a 7 bit file selection interface. Pins 1 through 7 (bits 0 through 6) will have the file number applied, and Pin 8 (bit 7) will trigger playback.

In this mode, a file number of 0 plays a file named "/N0000.MP3". A file number of 1 plays a file named "/N0001.MP3" and so on.



## PAGE 17



| Input Interface Pin | Description          |
|---------------------|----------------------|
| 1                   | Bit 0 (LSB)          |
| 2                   | Bit 1                |
| 3                   | Bit 2                |
| 4                   | Bit 3                |
| 5                   | Bit 4                |
| 6                   | Bit 5                |
| 7                   | Bit 6 (MSB)          |
| 8                   | Trigger (Active Low) |
| 9                   | Ground               |
| 10                  | V+ (5 Volts)         |

Table 6 - 7 Bit Parallel Mode Pin Assignments

To set the Input interface into 7 Bit Parallel Mode, you need to configure the  $\mu$ MP3 using the **Settings** "Input Style" command. The style value for 7 Bit Parallel Mode is "2". Once the setting has been configured, it is stored in EEPROM, and does not have to be set again. You can reconfigure it at any time, or clear the settings to default values by putting the  $\mu$ MP3 into "update mode".

Once in 7 Bit Parallel Mode, all pins of the Input interface are weakly pulled high internally. The lower 7 pins of the Input interface (and pin 8, if desired) can be connected to a port on microcontroller. The lower 7 pins are read as non-inverted. That is, if you want to play file number "7", the Input pins would be "0000111". The trigger on pin 8 will start playback when its value goes from high to low (falling edge triggered).

The trigger pin is not debounced, so a capacitor/resistor debounce circuit may be needed if the trigger pin is connected directly to a switch.

#### PAGE 18



| Value on Pins 1 | Binary Value | Hexadecimal | Associated |
|-----------------|--------------|-------------|------------|
| through 7       | Bit 6 Bit 0  | Value       | Filename   |
| 0               | 000 0000     | 00          | /N0000.MP3 |
| 1               | 000 0001     | 01          | /N0001.MP3 |
| 2               | 000 0010     | 02          | /N0002.MP3 |
|                 |              |             |            |
| 42              | 010 1010     | 2A          | /N0042.MP3 |
| 43              | 010 1011     | 2B          | /N0043.MP3 |
|                 |              |             |            |
| 126             | 111 1110     | 7E          | /N0126.MP3 |
| 127             | 111 1111     | 7F          | /N0127.MP3 |

 Table 7 - 7 Bit Parallel Mode File Numbering

Just the same as with the 8 Switch Mode, you can use the **Settings** "Input File Number Offset" command to introduce an offset to the filenames. This allows you to create "banks" of associated playback files.

# Hardware Busy Indicator

The  $\mu$ MP3 can indicate when it is busy playing an MP3 file. You must use the **Settings** "Hardware Busy Indicator" command to enable the indicator. Once set, the pin labeled "D" is configured as an active output. When a file is playing, the indicator is high (5 Volts). When the system is idle (no file playing), the indicator is low (0 Volts). If a file is paused, the indicator will remain high. If the playback is stopped, the indicator will go low.



# **Communications Protocol**

# **Description**

The Protocol for the  $\mu$ MP3 employs a simple but robust asynchronous serial control protocol. A command prompt ">" ("greater than" symbol, ASCII 62, HEX 0x3E) indicates that the  $\mu$ MP3 is ready to accept a command. A command can be sent, a response will be returned, and the command prompt will be sent again.

## Example

V{cr} 110.10 SN:UMP1-0000-1234>

If an error occurs while processing a command, an error is returned in the format Enn, listed in Table 1.

Example:

>PC F /MP3S/FIRSTMP3.MP3{cr}
EF2>

# Important

After a card is inserted, the card must be scanned the first time for file system information. For FAT16, this can take up to 10 seconds. On FAT32 cards, this never takes more than 2 seconds (although, if the card has just been formatted, the very first time it is used on the  $\mu$ MP3, it can take up to 20 seconds to initialize the file system). Always wait for the command prompt (">") before sending any commands.



# Command Format

CC{sp}Parameter1{sp}Parameter2{sp}...{cr}

#### Where:

"CC" is the command character(s) (commands listed below) {sp} is a single space character (ASCII 32, HEX 0x20) [this space is necessary] Parameter1, Parameter2, ... are parameters associated with the command {cr} is a carriage return character (ASCII 13, HEX 0x0d)

# **Command Listing Format**

### CC Parameter1 [Parameter2 [Parameter3]]...

"*CC*" is the command character(s).

"*Parameter1*" is the first parameter for the command. Often, this is a subcommand.

"*Parameter2*" is the second parameter for the command. If it is listed inside of square brackets [] then the parameter is optional.

Any parameters listed inside of square brackets [] are optional. Most commands that have optional parameters will require the previous parameter to be given.

### PAGE 21





# **General Commands**

## Version/Serial Number

V

#### Description

The *Version/Serial Number* command will return the current firmware version and the µMP3 serial number. The format is VVV.MM SN:UMP1-NNNN-NNNN.

#### Example

>V{cr} 110.10 SN:UMM1-0000-0001>

PAGE 22



# Play Control Commands

# Play File

### PC F path

- *path* is the absolute path to the file. A properly formatted path must begin with a "/" and be absolute (that is, it must begin at the root directory). Sub-directories are separated with "/" (forward slash).
  - e.g. "/VOICE/F01/F42.MP3"

#### Description

This plays file from the given path. Note: the file MUST be a valid CBR or VBR MP3, MP3+V, or RIFF formatted PCM/IMA ADPCM file.

If you send another *Play File* command while a file is playing, it will stop the current file from playing, then immediately start the new file.

#### Example

>PC F /MP3S/FIRSTMP3.MP3{cr}
>

PAGE 23



# Stop Playback

PC S

**Description** Playback is stopped.

Example
>PC S{cr}
>

# Pause Playback

PC P

#### Description

Playback is paused. If another *Pause Playback* command is issued, playback is resumed. The *Play Status* and *Playback Information* commands can be issued while playback is paused.

## Example

>PC P{cr} >

PAGE 24



# Play Status

PC Z

### Description

This shows the current status of the  $\mu$ MP3 playback. You can use this command to monitor when the current file has finished playing.

The first item returned is the playback state. "S" indicates that the  $\mu$ MP3 is stopped, "P" indicates that it is playing, and "D" indicates that it is paused. The second item is the current position in the file, given in seconds.

The third item is the current loop number. If this value is 0, the file is looped infinitely. To change the number of times a file is played, see the Loop Count in the **Settings** command.

#### Example

>PC Z {cr} P 6 1>

### PAGE 25



# **Playback Information**

#### PC I

### Description

This displays the information from the file currently playing. The current position in the file (in seconds), the sample rate, and the bit rate (varies if the file is a Variable Bit Rate file) are returned.

The first item returned is the current position in the file, given in seconds. The second item (separated from the first item by a space) is the sample rate. Typical MP3 sample rates are: 32 KHz, 44 KHz, or 48 KHz (only the numerical value is returned).

The third item is the bit rate. Typical MP3 bit rates are 96kbps, 128kbps, 160 kbps, and 192kbps. This value will change if the file currently playing is a VBR file (only the numerical value is returned).

The fourth and final item indicates whether the file is a stereo or mono file. "S" indicates a stereo file, while "M" indicates a mono file.

#### Example

>PC I{cr} 92 44 128 S>

PAGE 26



# Play Tone

## PC T [tone]

- o optional *tone* is a value between 0 and 255
  - Tone Frequency = Base Frequency \* d/128
  - tone value = base frequency value + divider value (d)

| Hex   | Decimal | Base Frequency |
|-------|---------|----------------|
| Value | Value   |                |
| 0x00  | 0       | 44100 Hz       |
| 0x20  | 32      | 48000 Hz       |
| 0x40  | 64      | 32000 Hz       |
| 0x60  | 96      | 22050 Hz       |
| 0x80  | 128     | 24000 Hz       |
| 0xA0  | 160     | 16000 Hz       |
| 0xC0  | 192     | 11025 Hz       |
| 0xE0  | 224     | 12000 Hz       |

- the frequency divider value d (1 through 31) will give a range of dividers from 1/128 through 31/128 (a divider value of 0, will produce no sound).
- E.g. Base Frequency of 48000 Hz, and a divider value of 16 gives a Tone Frequency of 48000 \* 16/128 = 6000 Hz the tone value used in the command would be 32 + 16 = 48

## Description

This command plays a tone derived from the parameter. The tone is played indefinitely until the  $\mu$ MP3 receives either the *Play Tone* command again with no parameter, or the *Stop Playback* command. If a file is being played while the *Play Tone* command is received, it will resume playing if the *Play Tone* command is received with no parameter.

## Example

>PC T 65{cr}



# Playback Speed Change

### PC X [speed]

- o optional *speed* is a value between 90 and 250
  - represents the fractional speed increment for playback (percentage). i.e. a value of 90 will play the file in 90% of the time it takes to play normally, and likewise, a value of 120 will play the file in 120% of the time it takes to play normally.

#### Description

This command changes the playback speed. If a value less than 100 is given, the file will play faster (and thus the pitch will be higher), and a value greater than 100 will play the file slower (with a lower pitch). If the *speed* parameter is not received, then the playback will return to normal. NOTE: the playback speed will return to normal after every file played.

#### Example

>PC X 95{cr}

#### PAGE 28



# <u>Settings</u>

Several settings on the  $\mu$ MP3 control its behavior. Each Setting is changed using the following format. The list of settings and their values are shown in Table 1.

## ST s [newvalue]

- *s* is the setting name, shown in the table below.
- *newvalue* is the new value to assign to the setting. If *newvalue* is not provided, then the current value for the setting is returned.

| Setting | Name            | Value           | Description                      |
|---------|-----------------|-----------------|----------------------------------|
|         |                 |                 | (default in bold)                |
| D       | Serial Bit Rate | 0               | 9600 bps                         |
|         |                 | 1               | 19200 bps                        |
|         |                 | 2               | 38400 bps                        |
|         |                 | 3               | 57600 bps                        |
|         |                 | 4               | 115200 bps                       |
| V       | Playback Volume | <b>0</b> to 254 | Volume for playback.             |
|         |                 |                 | 0 = loudest                      |
|         |                 |                 | 254 = Off                        |
|         |                 |                 | (individual channel volume       |
|         |                 |                 | control set by using two values  |
|         |                 |                 | LEFT RIGHT                       |
|         |                 |                 | e.a. "ST V 20 254" – mutes right |
|         |                 |                 | channel)                         |
| 0       | Loop Count      | 0 to 254        | This is number of times that     |
|         |                 |                 | every file is played.            |
|         |                 |                 | 0 = Infinite loops               |
|         |                 |                 | <b>1</b> = Play one time only    |
|         |                 |                 | 2 - 254 = number of times to     |
|         |                 |                 | play.                            |
| В       | Bass Boost      | <b>0</b> to 254 | Audio enhanced Bass and          |
|         |                 |                 | Treble.                          |
|         |                 |                 | Value = Amplitude value * 32 +   |
|         |                 |                 | Low Limit Frequency value        |
|         |                 |                 | Amplitude Enhancement Value      |
|         |                 |                 | = 0 to 15 (in 1dB steps)         |

### PAGE 29



|   |                                   |                  | Lower Limit Frequency Value =<br>2 to 15 (in 10 Hz steps)<br>e.g. "ST B 74" – 2 dB boost with<br>Lower Limit Frequency of 100<br>Hz (2 * 32 + 10)                             |
|---|-----------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S | Input Style                       | 0                | No input style monitored                                                                                                                                                      |
|   |                                   | 1                | 8 switch mode – 8 individual<br>switches corresponding to 8 files<br>Falling edge triggered                                                                                   |
|   |                                   | 2                | 7 bit parallel mode – The lower 7<br>bits represent the file to play (0<br>through 127), and the MSB<br>triggers the file<br>Falling edge triggered (data is<br>non-inverted) |
| Т | Write Time-out                    | <b>0</b> to 254  | Time in 10ms increments<br>(eg. 20 = 200ms)<br><b>0 = No time-out (waits<br/>indefinitely)</b>                                                                                |
| N | Input File Number<br>Offset       | <b>0</b> to 9999 | For both Input Styles, this setting allows for an offset for which files are used for playback                                                                                |
| U | Uninterrupted playback from Input | <b>0</b> or 1    | If set to 1, files started using the<br>Input pins will not be interrupted<br>by another input signal until<br>playback is complete.                                          |
| Н | Hardware Busy<br>Indicator        | <b>0</b> or 1    | If set to 1, the "D" pin becomes a playback indicator.                                                                                                                        |

Table 8 - Settings and Values

### Example

>ST B{cr} 0>ST B 1{cr} >ST B{cr} 1>

PAGE 30



# **File Control Commands**

## **Close File**

FC C fh

• *fh* is a file handle (1 - 4)

#### Description

This closes an open file.

### Example

```
>FC C 1{cr}
>
```

# Free Handle

### FC F

• *dev* is the device number (1 - 2)

### Description

Returns the next available free handle (1 through 4). If no handles are available, 0 is returned. *For simple applications, this is not necessary to implement.* 

### Example

>FC F{cr} 1>

PAGE 31



# Open File

#### FC O fh mode path

- *fh* is a file handle (1 4)
- *mode* is the open mode for the file.
  - 'R' Open in read mode. Data can be read non-sequentially (randomly). The filename in the path must exist.
  - 'W' Open in write mode. This opens a <u>new</u> file for writing. Data is written to the file sequentially. The filename in the path must NOT exist.
  - 'A' Open in append mode. This opens a new or existing file for writing. Data is written to the file sequentially. If the filename in the path does not exist, it will be created.
- *path* is the absolute path to the file. A properly formatted path must begin with a "/" and be absolute (that is, it must begin at the root directory). Subdirectories are separated with "/" (forward slash).
  - o e.g. "/LOGS/2004/JANUARY/JAN3.LOG"

#### Description

This will open a file on the card in one of three modes.

#### Example

>FC O 1 R /LOGS/2004/JANUARY/JAN03.LOG{cr}
>

#### Important

All files created with the  $\mu$ MP3 will have their modification and creation dates set to 01/01/2004 00:00:00. The date is not updated.

PAGE 32



# Read File

### FC R fh [bytes [address]]

- *fh* is a file handle (1 4)
- *bytes* is the number of bytes to read. This parameter is optional. If it is not specified, up to 512 bytes will be returned.
- *address* is the address at which to start reading. The *bytes* parameter MUST be given for the address parameter to be used.

#### Description

You can read up to 512 bytes at a time using the **Read** command. If the *bytes* parameter is larger than the number of bytes remaining in the file, then only the remaining bytes are returned. Use the **Info** command to find the current position in and the size of the file. If the **Read** command is successful, a single {*sp*} character is sent, followed by the data. If an error occurs, the first character returned is "E", followed by an error code (see Table 2). Data is sent verbatim (no escape characters) from the card.

### Example

(the data file contains only two lines of information)
>FC R 1{cr}
13:22:02 ADC1=4.9V
13:22:32 ADC1=4.9V
>FC R 1 18 0{cr}
13:22:02 ADC1=4.9V>



# Write File

### FC W fh bytes

- *fh* is a file handle (1 4)
- *bytes* is the number of bytes to be written. You must send this number of bytes to return to the command prompt.

#### Description

You can write up to 512 bytes at a time with the *Write* command. If the bytes parameter is omitted, then 512 bytes will be expected on the incoming serial stream. Data is accepted and written to the card directly (there is no escape sequence).

By default, there is no time-out for how long it takes to send the bytes to the  $\mu$ MP3. This means that the  $\mu$ MP3 will wait indefinitely for all the bytes to be sent (unless the power is removed, or a time-out value has been set using the **Settings** command).

If you assign a value to the write time-out setting using the **Settings** command, then the **Write** command will terminate, write the accepted bytes to the file, and return to the command prompt; no error will be returned.

If the file has been opened for append, the *Write* command will append all bytes to the end of the file.

### Example

>FC W 1 18{cr} 13:22:02 ADC1=4.9V>



# Information

### FC I fh

• *fh* is a file handle (1 - 4)

### Description

The **Information** command returns the current file position and the current file size for a given file handle. The format is **position/filesize**. The two values are given in decimal format.

#### Example

>FC I 1{cr} 19/37>

### **PAGE 35**



# Make Directory

### FC M path

• *path* is the absolute path to the directory to be created. A properly formatted path must begin with a "/" and be absolute (that is, it must begin at the root directory). Sub-directories are separated with "/" (forward slash).

### Description

The *Make Directory* command will create a directory.

#### Example

To create a directory named "JANUARY" under the path "/LOGS/2004":

```
>FC M /LOGS/2004/JANUARY{cr}
>
```

# Erase File

### FC E path

• *path* is the absolute path to the file to be erased. A properly formatted path must begin with a "/" and be absolute (that is, it must begin at the root directory). Sub-directories are separated with "/" (forward slash).

### Description

The *Erase File* command will erase a file.

#### Example

To erase a file named "JAN03.LOG" under the path "/LOGS/2004/JANUARY":

>FC E /LOGS/2004/JANUARY/JAN03.LOG{cr}
>

#### PAGE 36



# **Query Volume**

FC Q

### Description

The **Query Volume** command will return the free space and the total volume of the current memory card. The format is **freespace totalspace** (separated by a space). The two values are given in decimal format and in Kibibytes (i.e. 1024 bytes = 1 KiByte).

#### Example

>FC Q{cr} 51245 61525>

### PAGE 37



# List Directory

## FC L path

• *path* is the absolute path to the directory to be listed. A properly formatted path must begin with a "/" and be absolute (that is, it must begin at the root directory). Sub-directories are separated with "/" (forward slash).

## Description

The entire contents of the directory will be listed. This means that if the directory content is large, then the host must be prepared to deal with data. The format of the listing is:

D for "Directory" or number indicating the size of the file in bytes, then the filename terminated by a {cr].

If the *List Directory* command is successful, a single *{sp}* character is sent, followed by the data. If an error occurs, the first character returned is "E", followed by an error code (see Table 2).

## Example

To list the contents under the path "/LOGS/2004":

```
>FC L /LOGS/2004{cr}
D JANUARY{cr}
D FEBRUARY{cr}
D MARCH{cr}
3429 YEARLY.TXT{cr}
1502 NOTES.TXT{cr}
>
```



# **Device Information**

### FC D

**Description** Lists all the devices, each size in KiBytes, and free space in KiBytes

Example >FC D{cr} 2 30150 23016>

## PAGE 39



# **Example Session**

This example session plays a file, checks the playback information, and opens a file for reading.

```
>PC F /FIRSTMP3.MP3{cr}
>PC I{cr}
92 44 128 S>0 1 R /LOGS/2004/JANUARY/JAN03.LOG{cr}
>R 1 18{cr}
13:22:02 ADC1=4.9V>C 1{cr}
>
```

PAGE 40



# **Error Responses**

When a command produces an error, the response is **Enn**. The table of responses is given below.

Below is an example error response from an open command that attempts to open a file that does not exist.

#### Example:

>PC F 2 /BAD/NOMP3.MP3{cr} EF2>

| Error | Description                                                           |
|-------|-----------------------------------------------------------------------|
| Code  |                                                                       |
| E02   | Buffer Overrun – Too many bytes were sent in the command. All         |
|       | command can be a maximum of 256 bytes (including the path).           |
| E03   | No Free Files – This is a response from the <i>Free File</i> command. |
|       | There are no more open handles. You must close an open file           |
|       | handle before a new one can be opened.                                |
| E04   | Unrecognized command.                                                 |
| E06   | Command formatting error – this occurs if parameters are missing      |
|       | or invalid.                                                           |
| E07   | End of file                                                           |
| E08   | Card not inserted                                                     |
| E09   | MMC/SD Reset failure                                                  |
| EOA   | Card write protected                                                  |
| EOC   | Device not available                                                  |
| EOF   | Can not play from that device                                         |
| EE6   | Read-only file – a Read-Only file (file attributes) is trying to be   |
|       | opened for write or append.                                           |
| EE7   | Not a file – an invalid path.                                         |
| EE8   | Write Failure – There could be many reasons for this (damaged         |
|       | card, card removed WHILE writing, etc)                                |
| EEA   | No free space – There is no free space on the card.                   |
| EEB   | File not open – The file handle specified has not been opened with    |
|       | the <i>Open</i> command.                                              |
| EEC   | Improper mode – A <i>Read</i> command was attempted while the file    |
|       | has been opened for writing, or vice-versa.                           |
| EED   | Invalid <b>Open</b> mode – only 'R', 'W', and 'A' are acceptable open |
|       | modes.                                                                |
| EF1   | Handle in use – The specified handle is already being used.           |

#### PAGE 41



| EF2 | File does not exist – The file in the path specified does not exist. |
|-----|----------------------------------------------------------------------|
| EF4 | File already exists – A Write command was issued, and the file in    |
|     | the path already exists.                                             |
| EF5 | Path invalid – The path specified does not exist. Ensure that all    |
|     | directory names in the path exist.                                   |
| EF6 | Invalid handle – The handle specified is not valid.                  |
| EFB | Bad FSINFO Sector (FAT32 only)                                       |
| EFC | Unsupported FAT version. Ensure the card is inserted correctly and   |
|     | that the card has been formatted to FAT16 or FAT32.                  |
| EFD | Unsupported Partition type                                           |
| EFE | Bad Partition information                                            |
| EFF | Unknown Error                                                        |

Table 9 - Error Codes

### PAGE 42



# <u>Notices</u>

This document may contain technical inaccuracies or typographical errors. The information in this document may change without notice. Changes and improvements to the products may occur at any time.

This document is provided "as-is" and without warranty of any kind, either express or implied.

# **Copyright Information**

This document is copyright © 2005 Rogue Robotics Corporation Inc. All rights reserved.

Any person may view, copy, print and distribute this document or any portion of this document for informational purposes only as long as the copyright notice remains included.

# **Trademarks**

µMP3 is a trademark of Rogue Robotics Corporation Inc.

# Life Support Policy

Rogue Robotics Corporation Inc. products are not intended or authorized for use in any life support situation. These systems may include devices for sustaining life, surgical implant into or onto the body, or any other system whose failure to perform correctly could result in life support failure.

# **Contact and Support**

Contact: Rogue Robotics Corporation support@roguerobotics.com Toronto, ON Canada Support: 1 866 99 ROGUE (76483) PH: (416) 288-0600 (in Toronto) Fax: (416) 288-0608

PAGE 43